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Privacy Concerns
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®m Banks currently restricting chatbot’s use, people familiar say
®m ChatGPT has sparked intense interest across industries
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ChatGPT banned in Italy over
privacy concerns
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Leaked Walmart memo warns employees not to share ‘any
information about Walmart's business' with ChatGPT or other Al
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[ ack of Privacy in Code Completion

10,000 AWS secret access keys carelessly left in code
uploaded to GitHub

By Shawn Knight March 25,2014, 1:00 PM

~ Techspot, 201

T Ty T ———— Yes, GitHub's Copilot can
itHub Copilo s Leaking Functiona Leak (Real) Secrets

AP Keys
Researchers successfully extracted valid hard-coded secrets from

SendGrid’s engineer reported a bug in the Al tool, Github CEO acknowledges this issue. Copilot and CodeWhisperer, shedding light on a novel security risk

&y By Amit Kulkarni july 29, 2021 associated with the proliferation of secrets.
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Man vs the machine in the struggle
for effective text anonymisation
in the age of large language models

Constantinos Patsakis™**~! & Nikolaos Lykousas®**

The collection and use of personal data are becoming more common in today’s data-driven culture.
While there are many advantages to this, including better decision-making and service delivery, it
also poses significant ethical issues around confidentiality and privacy. Text anonymisation tries to
prune and/or mask identifiable information from a text while keeping the remaining content intact to
alleviate privacy concerns. Text anonymisation is especially important in industries like healthcare,
law, as well as research, where sensitive and personal information is collected, processed, and
exchanged under high legal and ethical standards. Although text anonymisation is widely adopted
in practice, it continues to face considerable challenges. The most significant challenge is striking a
balance between removing information to protect individuals’ privacy while maintaining the text's
usability for future purposes. The question is whether these anonymisation methods sufficiently
reduce the risk of re-identification, in which an individual can be identified based on the remaining
information in the text. In this work, we challenge the effectiveness of these methods and how we
perceive identifiers. We assess the efficacy of these methods against the elephant in the room, the
use of Al over big data. While most of the research is focused on identifying and removing personal
information, there is limited discussion on whether the remaining information is sufficient to
deanonymise individuals and, more precisely, who can do it. To this end, we conduct an experiment
using GPT over anonymised texts of famous people to determine whether such trained networks can
deanonymise them. The latter allows us to revise these methods and introduce a novel methodology
that employs Large Language Models to improve the anonymity of texts.

In today's data-driven society, the collection and use of personal information are becoming increasingly preva-
lent. While this has numerous benefits, such as improved decision-making and better service provision, it also
raises important ethical concerns related to privacy and confidentiality. Indeed, harvesting user data is a com-
mon practice of far too many online platforms and services with a significant impact on citizens. This has been
one of the pillars that led to the introduction of the General Data Protection Regulation (GDPR)' and other
relevant legislation around the world as a means to address the privacy issues that emerged. The GDPR mandates
using privacy-preserving methods and processes throughout the data management lifecycle, from collection and
processing to sharing and publishing. One of these fundamental methods is anonymisation. Given that modern
organisations continuously deal with documents, the above has served as a catalyst in the emergence of text
anonymisation as a research topic with many practical applications. The general concept is that given a text, one
has to remove or mask identifiable information while preserving the remaining content. Text anonymisation is
particularly relevant in healthcare, law, and research, where personal and sensitive information is overwhelming
and must be protected to comply with privacy regulations and ethical guidelines.

Although text anonymisation has been widely adopted in practice, it still faces significant challenges. These
methods must strike a balance between the need to protect the privacy of individuals and the need to preserve
the data utility. Let us consider this with an example where the anonymisation task is to anonymise the sentence
“Volodymyr Zelenskyy is the president of Ukraine”. Clearly, simply removing the name is not enough. If one is

iven the sentence “| NAME |is the president of Ukraine”, it is trivial to recover the missing information. There-
B g

fore, the anonymised sentence would be “ is the president of | COUNTRY [" To this end, named entity

'Department of Informatics, University of Piraeus, B0 Karacli & Dimitriou str, 18534 Piraeus, Greece. ‘Management
Systems Institute of Athena Research Centre, Marousi, Greece. *Data Centric Services, Bucharest, Romania. ‘These
authors contributed equally: Constantinos Patsakis and Nikolaos Lykousas. “email: kpatsak@unipi.gr
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Privacy Attacks by tvading Model Alignment

Multi-step Jailbreaking Privacy Attacks on ChatGPT
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Abstract

With the rapid progress of large language
maodels (LLMs), many downstream NLP tasks

Such mass collection of personal data incurs de-
bates and worries. For example, under the EU’s
General Data Protection Regulation (GDPR), train-

Jailbroken: How Does LL.LM Safety Training Fail?

Content Warning: This paper contains examples of harmful language.
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privacy threats from OpenAl's ChatGPT and
the New Bing enhanced by ChatGPT and show
that application-integrated LLMs may cause
new privacy threats. To this end, we conduct
extensive experiments to support our claims
and discuss LLMs’ privacy implications.

1 Introduction

The rapid evolution of large language models
(LLMs) makes them a game changer for mod-
ern natural language processing. LLMs' domi-
nating generation ability changes previous tasks’
paradigms to a unified text generation task and con-
sistently improves LLMs" performance on these
tasks (Raffel et al., 2020; Chung et al., 2022; Brown
et al., 2020b; OpenAl, 2023; Ouyang et al., 2022;
Chan et al., 2023). Moreover, given appropriate
instructions/prompts, LLMs even can be zero-shot
or few-shot learners to solve specified tasks (Chen
et al., 2021; Zhou et al., 2023; Kojima et al., 2022;
Wei et al., 2022b; Sanh et al., 2022).

Notably, LLMs" training data also scale up in
accordance with models’ sizes and performance.
Massive LLMs" textual training data are primar-
ily collected from the Internet and researchers pay
less attention to the data quality and confidential-
ity of the web-sourced data (Piktus et al., 2023).

Haoran Li and Dadi Guo contribute equally.

leakage. However, these works mainly investigated
variants of GPT-2 models (Radford et al., 2019)
trained simply by language modeling objective,
which aimed to predict the next word given the cur-
rent context. Despite the efforts made by these pio-
neering works, there is still a huge gap between the
latest LLMs and GPT-2. First, LLMs’ model sizes
and dataset scales are much larger than GPT-2. Sec-
ond, LLMs implement more sophisticated training
objectives, which include instruction tuning {Wei
et al., 2022a) and Reinforcement Learning from
Human Feedback (RLHF) (Christiano et al., 2017).
Third, most LLMs only provide application pro-
gramming interfaces (APIs) and we cannot inspect
the model weights and training corpora. Lastly, it
is trending to integrate various applications into
LLMs to empower LLMs" knowledge grounding
ability to solve math problems (ChatGPT + Wol-
fram Alpha), read formatted files (ChatPDF), and
respond to queries with the search engine (the New
Bing). As a result, it remains unknown to what
extent privacy leakage occurs on these present-day
LLMs we use.

To fill the mentioned gap, in this work, we con-

'See https://www.bbc.com/news/
technology—-65135406. Currently, ChatGPT is
no longer banned in Italy.
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utilizing our failure modes succeed on every prompt in a collection of unsafe
requests from the models’ red-teaming evaluation sets and outperform existing ad
hoc jallbreaks. Our analysis emphasizes the need for safety-capability parity—that
safety mechanisms should be as sophisticated as the underlying model—and argues
against the idea that scaling alone can resolve these safety failure modes.

1 Introduction

In recent months, large language models (LLMs) such as ChatGPT, Claude, and Bard have seen
widespread deployment. These models exhibit advanced general capabilities [38], but also pose risks
around misuse by bad actors (e.g., for misinformation or for crime [9, 32, 25, 30, 28]).

To mitigate these risks of misuse, model creators have implemented safety mechanisms to restrict
model behavior to a “safe” subset of capabilities. These include both training-time interventions to
align models with predefined values [41, 7] and post hoc flagging and filtering of inputs and outputs
[56, 24, 52, 45]. These efforts are often complemented by red teaming, which proactively identifies
and trains against weaknesses [42, 23, 38].

While hardening LLMs for safety can help [38], models remain vulnerable to adversarial inputs,
as demonstrated by the spread of “jailbreaks” for ChatGPT on social media since its initial release
[13, 17, 2]. These attacks are engineered to elicit behavior, such as producing harmful content or
leaking personally identifiable information, that the model was trained to avoid. Attacks can range
from claborate role play (e.g., DAN [48]) to subtle subversion of the safety objective (see Figure 1(a)).
Meodel creators have acknowledged and updated their models against jailbreak attacks [7, 38, 10, 5],
but a systematic analysis and a conceptual understanding of this phenomenon remains lacking.

In this work, we analyze the vulnerability of safety-trained LLMs to jailbreak attacks by examining
the model’s pretraining and safety training processes. Based on known safety training methods, we
hypothesize two failure modes—competing objectives and mismatched generalization—that shed

"Equal advising.

Preprint. Under review.

2311.17035v1 [cs.LG] 28 Nov 2023

arxiv

ations and emit training data at a rate 150 higher than when
behaving properly. Our methods show practical attacks can
recover far more data than previously thought, and reveal that
current alignment technigues do not eliminate memornization.

1 Iniroduction

Large language models (LLMs) memorize examples from
their training datasets, which can allow an attacker to extract
{potentially private) information [7, 12, 14]. Prior work has
{a) performed large-scale studies of the total quantity of
memorized training data for open-source models [11], and
(b} developed practical attacks to extract training data on
{relatively) small models like GPT-2, by manually annotating
examples as memorized or not [14].

In this paper, we unify these two directions and perform a
large-scale study of “extractable memorization™ in language
models. Unlike discoverable memorization [11] that captures
an upper bound on all training data that 1s memorized (even
if it can only be recovered by prompting the model with other
training data), extractable memorization captures only that
data that can be efficiently recovered by an adversary. We
develop a scalable methodology that allows us to detect mem-
orization in trillions of tokens of model outputs in terabyte-
sized datasets, and perform this analysis on both open-source
models (e.g., Pythia [5], GPT-Neo [6]) and semi-open models
{e.g., LLaMA [49], Falcon [40]). We find that larger and more
capable models are more vulnerable to data extraction attacks.

Figure 1: We scalably test for memorization in large language
maodels. Models emit more memorized training data as they
get larger. The aligned ChatGPT (gpt-3.5-turbo) appears
50 more private than any prior model, but we develop an
attack that shows it is not. Using our attack, ChatGPT emuits
training data 150 more frequently than with prior attacks,
and 3x more frequently than the base model.

But when we perform this analysis on gpt-3.5-turbo, it
appears to memorize almost no training data. We hypothe-
size that this is because ChatGPT has been aligned (with
RLHF [35,37,39,44]) to act as a helpful chat assistant.!

To circumvent the model’s alignment, we discover a
prompting strategy that causes gpt-3.5-turbo to “diverge”
from reasonable, chatbot-style generations, and to behave
like a base language model, outputting text in a typical
Internet-text style. In order to check whether this emitted
text was previously contained somewhere on the Internet,
we merge together several publicly awvailable web-scale
training sets into a nine terabyte dataset. By matching
against this dataset, we recover over ten thousand examples
from ChatGPT's training dataset at a query cost of 3200
USD—and our scaling estimate suggests that one could
extract over 10 more data with more queries.

"While limited information is available about this model, similar models
like GPT-4 have been trained to “refuse to answer cerain types of requests,”
including those related to training data extraction [37, p. 13].

[C] Multi-step Jailbreaking Privacy Attacks on ChatGPT, Li et al, March 2023
[D] Jailbroken: How Does LLM Safety Training Fail?, Wel et al,, Preprint, July 2023

[E] Scalable Extraction of Training Data from (Production) Language Models, Nasr et al.,, Preprint, November 2023
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Privacy Attacks by Evading Safety Filters

Preventing Generation of Verbatim Memorization in Language
Models Gives a False Sense of Privacy

Daphne Ippolito!
Chiyuan Zhang™*!
Christopher A. Choquette-Choo*’

! Google Research

Abstract

Studying data memorization in neural lan-
guage models helps us understand the risks
(e.g., to privacy or copyright) associated with
madels regurgitating training data and aids in
the development of countermeasures. Many
prior works—and some recently deployed
defenses—focus on “verbatim memorization”,
defined as a model generation that exactly
matches a substring from the training set. We
argue that verbatim memorization definitions
are too restrictive and fail to capture more sub-
te forms of memorization. Specifically, we de-
sign and implement an efficient defense that
perfectly prevents all verbatim memorization.
And yet, we demonstrate that this “perfect” fil-
ter does not prevent the leakage of training
data. Indeed, it is easily circumvented by plau-
sible and minimally modified “style-transfer”
prompts—and in some cases even the non-
modified original prompts—to extract memo-
rized information. We conclude by discussing
potential alternative definitions and why defin-
ing memorization 1s a difficult yet crucial open
question for neural language models.

1 Introduction

The ability of neural language models to memo-
rize their training data has been studied extensively
{Kandpal et al., 2022; Lee et al., 2021; Carlini et al.,
2022; Zhang et al., 2021; Thakkar et al., 2021;
Ramaswamy et al., 2020). When language mod-
els, especially ones used in production systems,
are susceptible to data extraction attacks, it can
lead to practical problems ranging from privacy
risks to copyright concerns. For example, Carlini
et al. (2021) showed that the GPT-2 language model
could output personally identifying information of
individuals contained in the training dataset.
*Remaining authors ordered by Algorithm 18 in Ap-
pendix H: briefly, we reguire Daphne be listed first, and
Micholas listed last, and we search for the first permutation of

authors” first names which satisfies these constraints, where
permutations order names by their salted MD3 hash.

Florian Tramér**

Matthew Jagielski®!

* ETH Zurich
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Figure 1: Mustration of Memorization-free Decoding,
a defense which can eliminate verbatim memorization
in the generations from a large neural language model,
but does not prevent approximate memorization.

One natural way to avoid this risk is to filter out
any generations which copy long strings verbatim
from the training set. GitHub's Copilot, a language-
model-based code assistant, deploys this defense
by giving users the option to “block suggestions
matching public code™ (GitHub, 2022).

In this work, we ask the question: “Deo lan-
guage models emit paraphrased memorized con-
tent 7" This scenario can happen maliciously (e.g.,
adversaries trying to extract private user data) or
through honest interactions (e.g., users prompting
in real-world scenarios). Indeed, we find that Copi-
lot's filtering system is easy to circumvent by ap-
plying plausible “style transfers” to the prompt.
For example, by translating variable names from
English to French the model outputs completely
memorized examples, but post-processed with the
en-fr style transfer. We further show that GPT-
3 (Brown et al., 2020), a model trained on natural
language, is also vulnerable to extraction attacks.

Unfortunately, Copilot's training set and precise
algorithm for their defense are non-public. There-
fore, to investigate this phenomenon systematically,
we develop MEMFREE decoding (Figure 1), an ef-
ficient defense that is guaranteed to prevent all ver-
batim memorization, and which scales to training
sets consisting of hundreds of gigabytes of text. In

Proceedings of the 16th International Natwral Language Generation Conference, pages 28-53
eplember 11-13, 2023, ©2023 Association for Computational Linguistics
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Public Data and Private Information

What Does it Mean for a Language Model to Preserve Privacy?

Hannah Brown'!, Katherine Lee?, Fatemehsadat Mireshghallah®
Reza Shokri!, Florian Tramér**
!National University of Singapore, 2Cornell University
3University of Calilornia San Diego, *Google
{hsbrown, reza}@comp.nus.edu.sg kate.leel168@gmail.com
fatemeh@ucsd.edu tramer@google.com

* Data shared to intentionally violate someone’s privacy (e.g., 'doxing’’)

Natural language reflects our private lives and identities, making its privacy concerns as broad as
those of real life. Language models lack the ability to understand the context and sensitivity of text,
and tend to memorize phrases present in their training sets. An adversary can exploit this tendency
to extract training data. Depending on the nature of the content and the context in which this data
was collected, this could violate expectations of privacy. Thus, there is a growing interest in techniques
for training language models that preserve privacy. In this paper, we discuss the mismatch between
the narrow assumptions made by popular data protection techniques (data sanitization and differential
privacy), and the broadness of natural language and of privacy as a social norm. We argue that existing N . = d ‘ ‘ ° ° ’ ,
protection methods cannot guarantee a generic and meaningful notion of privacy for language models. o
e coud i ol Sho b rne ottt v s ey e 1 Social media pOSJES issued to a small target audience ( IN-group shari ng )

public use.

1 Introduction

‘We use natural language to construct identities and communicate all our information in day-to-day life.
Humans naturally understand when sharing a sensitive piece of information is appropriate based on context.
It may be fine to share the same piece of information with one specific person or group, and a complete [ ) [ [ °
violation of privacy to share in another context, or at another point in time. Between humans, we trust that () A
these implicit boundaries will be recognized and respected. As we build technologies that collect, store, and C C | e n a e a <ag e O O e r S | n O rl I I a | O n e 3 g C O n ve rs a I O n S
process our natural language communication, it is important that these technologies do not violate human )
notions of privacy or make use of data in ways beyond what is needed for the utility of the technology 71, 101].
Language models (LMs) underlie much natural language technology we regularly interact with, from
autocorrect to search engines and translation systems. Ower the past few years, LMs have grown in size and
now utilize unprecedentedly large datasets of natural language making privacy risks in LMs a far reaching
problem. Prior work has already demonstrated that such models are prone to memorizing and regurgitating
large portions of their training data [12,13,51,/38,/91]. Worse, they are especially likely to memorize atypical
data points—which are more likely to represent privaey risks for the authors or subjects of these texts.
To address these privacy concerns, there is a growing body of literature that aims to create privacy-
preserving language models [64, 2, 56, 98,84, 40, 79]. While humans navigate the complexities of language
and privacy by identifying appropriate contexts for sharing information, LMs are not currently designed to
do this [14, 72, 66, 49, 66, 50, 41]. Instead, the approach to preserving privacy in LMs has been to attempt
complete removal of private information from training data (data sanitization), or to design algorithms that
do not memorize private data, such as algorithms that satisfy differential privacy (DP) |28, 26].
Both methods make explicit and implicit assumptions about the structure of data to be
protected, the nature of private information, and requirements for privacy, that do not hold
for the majority of natural language data. Sanitization techniques assume that private information can
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Abstract—Language Models (LMs) have been shown to leak
information about training data through sentence-level member-
ship inference and recomstruction attacks. Understanding the
risk of LMs leaking Personally Identifiable Information (PLI)
has received less attention, which can be atiributed to the false
assumption that dataset curation technigues such as scrubbing
are sufficient to prevent PII leakage. Scrubbing technigues reduce
but do not prevent the risk of PII leakage: in practice scrubbing
is imperfect and muost balance the trade-off between minimizing
disclosure and preserving the utility of the dataset. On the
other hand, it is unclear to which extent algorithmic defenses
such as differential privacy, designed to guarantee sentence-
or user-level privacy, prevent PII disclosure. In this work, we
introduce rigorous game-based definitions for three types of P11
leakage via black-box extraction, inference, and reconstruction
attacks with only API access to an LM. We empirically evaluate
the attacks against GPT-2 models fine-tuned with and without
defenses in three domains: case law, health care, and e-mails. Our
main contributions are (i) novel attacks that can extract up to
10 more PII sequences than existing attacks, (ii) showing that
sentence-level differential privacy reduces the risk of PII disclo-
sure but still leaks about 3% of PII sequences, and (iii) a subtle
connection between record-level membership inference and PII
reconstruction. Code to reproduce all experiments in the paper is
available at https:/github.com/microsoft/analysing_pii_leakage.

I. INTRODUCTION

Language Models (LMs) are fundamental to many natural
language processing tasks [22, 49]. State-of-the-art LMs scale
to trillions of parameters [19] and are pre-trained on large text
corpora (e.g., TO0GB [53]). Pre-trained LMs are adapted to
downstream tasks by fine-tuning on domain-specific datasets
such as human dialogs [7] or clinical health data [62] which
may contain private information.

Memorization is a privacy concern in LMs [9]. The threat
is that an attacker learns by whom the training data was
provided, known as membership inference [30, 45, 46, 58]
and abowt whom 1t contains information, known as data
extraction [9, 11, 29, 59, 69]. These two categories can be
disjoint but assoclations in the latter can be used to infer
information about the former. For LMs, data extraction 1s a
significant threat in practice since attackers with black-box
API access can extract at least 1% of the training data [11].

Existing work focuses on finding a lower bound on any kind
of memorization but does not differentiate public and private

Spart of this work was donc during an imemship at Microsoft Resesarch.
1T?l:- cite this work, please refer to the full publication [41] in IEEE Secunty
and Privacy (S&FP) 2023.
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Fig. I: An illustration of PII extraction, reconstruction and
inference attack technigues.

leaked information. For example, leaking highly duplicated
common phrases is not a privacy violation according to the
GDPR [17] as opposed to leaking Personally Identifiable
Information (PIIT). In practice, any LM trained on real, sensitive
data has to protect PII, but memorization of PIT is not well
understood. We believe that a comprehensive study on the risk
of PII memorization in LMs is missing.

Consider a service provider who wants to deploy a next-
word prediction LM for composing e-mails, such as Google's
Smart Compose [13]. Their goal is to train an LM with high
utility that does not leak PII and make it available as a black-
box APL The threat is an attacker who leams PIL, such as
names, addresses or other sensitive information through the
LM. Extracting any PII by itself, such as a personal address,
can already pose a privacy threat. This threat is elevated
when an attacker can associate a picce of PII to a context,
for example, “In May 2022, [MASE] had chemotherapy at
LHS". As a part of this paper, we study the feasibility of such
attacks on LMs in practice. Figure 1 illustrates the type of PII
attacks proposed in this work.

Defenses against memorization are based on dataset cu-
ration and algorithmic defenses. PII scrubfbing is a dataset
curation technique that removes PII from text, relying on
Named Entity Recognition (NER) [35] to tag PII. Modern
MER is based on the Transformer architecture [63] and has
mixed recall of 97% (for names) and 80% (for care umit
numbers) on clinical health data, meaning that much PII
is retained after scrubbing [62]. Machine leaming pipelines
incorporate algorithmic defenses such as differentially-private

[H] Analyzing Leakage of Personally Identifiable Information in Language Models,
| ukas et al, February 2023
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Abstract
This paper describes a testing methodology for quantita-
tively assessing the risk that rare or unique trainin,
sequences are pninfentionally memorized by generative se-

data

For example, users may find that the input “my social-secusity
number is... " gets auto-completed to an obvious seeret (such
as a valid-looking S8N not their own), or find that other in-
puts are auto-completed 1o text with oddly-specific details. So

quence models—a common type of machine-leaming model.
s such models are sometimes trained on sensitive data
he text of users’ private messages), this methodology
<an benefit privacy by allowing deep-leaming practitioners 1o
select means of training that minimize such memorization.

In experiments, we show that unintended memorization is
a persistent, hard-to-avoid issue that can have serious conse-
quences, Specifically, for models trained withoul considera-
tion of memorization, we describe new, efficient procedures
that can exiract unique, secrel sequences, such as credit card
numbers. We show that our testing strategy is a practical and
casy-to-use first line of defense, e.g.. by describing its ap-
plication to quantitatively limit data exposure in Google's
Smart Compose, a commercial text-completion neural net-
waork trained on millions of users’ email messages.

1 Introduction

When a secret is shared, it can be very difficult to prevent its
further disclosure—as artfully explored in Joseph Conrad's
The Secres Sharer [10]. This difficulty also arises in machine-
learning models based on neural networks, which are being
rapidly adopted for many purposes. What details those models
may have unintentionally memorized and may dis
be of significant concern, especially when models are public
and models’ training involves sensitive or private data.
Disclosure of secrets is of particular concem in neural-
network models that classify or predict sequences of natural-
language text, Firsy h text will often contain sensitive or
private sequences, accidentally, even if the text is supposedly
public. Second, such models are designed to learn text pat-
terns such as grammar, turns of phrase, and spelling., which
comprise a vanishing fraction of the exponential space of
all possible sequences. Therefore, even if sensitive ar pri-
vale training-data text is very rare, one should
well-trained models have paid attention to its prec
Concretely, disclosure of secrets may arise naturally in gen-
erative text models like those used for text auto-completion
and predictive keyboards, if trained on possibly-sensitive data.
The users of such models may discover—either by accident
or on purpose—ihat entering certain text prefixes canses the
maodels to output surprisingly-revealing text leti [3T

lose can

4 OF clurious users may start o “attack”™
such models by entering different input prefixes to try 1o mine
possibly-secret suffixes. Therefore, for generative text mod-
els, assessing and reducing the chances that secrets may be
disclosed in this manner is a key practical concern.

To enable practitioners to measure their models” propensity
fior disclosing details about private training data, this paper
introduces a quantitative metric of exposure. This metric can
be applied during training as part of a testing methodology
that empirically measures a moddel's pote for unintended
memosization of unique or rare sequences in the waining data.

Our exposure metric conservatively characterizes knowl-
edgeable attackers that target secrets unlikely 1o be discovered
by accident (or by a most-likely beam search), As validation
of this, we describe an algorithm guided by the exposure met-
ric that, given a pretruined model, can efficiently extract secret
sequences even when the model considers parts of them to be
highly unlikely, We demonstrate our algorithm's effectiveness
in experiments, ¢.g., by extracting credit card numbers from a
language model rained on the Enron email data, Such empir-
cal extraction has proven useful in convincing practitioners
that unintended memorization is an issue of serious, practical
concern, and not just of scademic interest

Our exposure-based testing strategy is practical, as we
demonstrate in experiments, and by describing its use in
removing privacy risks for Googhe's Smant Compose, a de-
ploved, commercial model that is trained on millions of users’
email messages and used by other users for predictive text
completion during email composition [§].

In evaluating our exposure metric, we find unintended mem-
orization to be both commonplace and hard to prevent. In
particular, such memorization is not due to overtraining [47]:
it oceurs early during training, and persists across different
types of models and training strategics—even when the mem-
orized data is very rare and the model] size is much smaller
than the size of the training data corpus. Furthermore, we
show that simple, intuitive regularization approaches such
as early-stopping and dropout are insufficient 1o prevent un-
intended memaorization. Only by using differentially-private
training techniques are we able 1o eliminate the issue com-
pletely, albeit at some loss in utility.
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Abstract

Current language models can generate high-
quality text. Are they simply copying text
they have seen before, or have: they learned
B lizable linguistic abstractions? To
tease apart these possibilities, we intro-
duce RAVEN, a suite of analyses for as-
sessing the movelty of generated text, fo-
cusing on sequential structure (n-grams)
and symactic structure. We apply these
analyses to four neoral language models
(an LSTM, a Transformer, Transformer-XL.,
and GPT-2). For local structure—e.g., indi-
vidual dependencies—model-generated text
is substantially less nowel than our base-
line of human-generated text from each
midel’s test set. For larger-scale structure—
cg. overall sentence structure—model-
generated text is as novel or even more
novel than the human-generted baseline,
but models still sometimes copy substan-
tially, in some casex duplicating passapes
aver 1,000 words long from the training set,
We also perform extensive manual analyss
showing that GPT-2's novel text is usually
well-formed morphologically and syntacti-
cally but has reasonably frequent semantic
issues (e.g., being self-contradictory).

1 Introduction

How deep is deep learning” Are neural networks
“discovering intricate structures” that support so-
phisticated generalization (LeCun et al., 2015), or
are they “stochastic parrots” that simply memo-
rize seen examples and recombine them in shallow
ways (Bender et al., 2021)7

We focus on this question in the arca of open-
ended text generation. Newral network language
models (LMs) can generate grammatical, coherent
text (See et al,, 20019; Brown et al,, 2020, section
3.5.4), but the text alone cannot tell us if it was

* Work partially done while at Microsoft Resarch.

constructed by the model or copied from the train-
ing set. We argue that it is important to disentangle
these possibilities. That is, in addition to evaluat-
ing the guality of generated text, as is already stan-
dard (Gart and Krahmer, 2018; Celikyilmaz et al.,
2020), we should also evaluate its novelty.

Movwelty is important for several reasons, From
a linguistic perspective, one core component of
knowing a language is the ability o combine fa-
miliar parts in novel ways (Chomsky, 1957, Hock-
cit, 1963). From a machine learning perspective,
models are meant to leamn the training disiribu-
fion, not just memonze the training set {Dietterich,
19%5). Finally, on the more practical side, models
that copy training data might leak sensitive infor-
mation (Carlini et al., 2021) or repeat hate speech
(Bender et al., 2021).

In this work, 1o assess the novelty of gener-
ated text, we introduce a suite of analyses called
RAVEN (RAting VErbal Noveliy), - These anal-
yses cover both sequential structure (r-grams)
and syntactic structure. We apply these analy-
ses 1o text generated by an LSTM, a Transformer,
Transformer-XL. and all 4 sizes of GPT-2 (the
largest LM for which we had access to the training
data). Because there are many ways o generale
text from LMs, we test 12 generation methods and
4 prompt lengths. As a bascline, we also analyze
human-generated text from each model’s test set

We find that models display novelty for all as-
pects of structure that we analyze: they gener-

' GitHub code will be released soon.

*Wewhal here uses its broad definition of “linguistic™ rather
than the narrow definition of “verb-related.” This acronym
refers io“The Raven™ by Edgar Allan Poe, in which the narra-
tor a mystericus raven which repeatedly cries out,
“Nevermone!™ The narrator cannod tell if the raven is simply
repeating something that it heard a buman say. or if it is con-
slrucling its own ullerances (perhaps by combining never and
e} —ihe same basic ambiguity that our paper addresses.
This acronym is also a nod 10 Bender et al.'s (2021 ) compari-
00 0f LMs 1o another ulterance-memoriing bird, the parrol.
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Abstract

It has become common to publish large (hillion parameter)
language moddels that have been trained on private datasets,
This paper demonstrates that in such settings, an adversary can
perform a tradning data extraction attack 1o recover individual
training examples by querying the language maxdel,

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able 10 extract
hundreds of verbatim text sequences from the model's training
data. These extracted examples include (public) personally
identifiable information {names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just are document in the training data.

We comprehensively evaluate our extraction attack o un-
derstand the factors that contribute to its success. Worryingly.
we find that larger models are more vulnerable than smaller
maxdels. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
natural language processing tasks, Modern newral-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to gencrate fluent natural language [53. 74, 76].
and also allows them to be applied to a plethora of other
nasks [29, 39, 55, even without updating their parameters [7].

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47,65) and in the specific case of
language models [8,45]. For instance, for certain models it
15 known that sdversanies can apply membership inference
artacks [65] to predict whether or not any particular example
wats i the tramning data

Prafix

East Strouwdsburg Stroudsburg... J

Hnrporation Seabank Centre
Marine Parade Southport

Figure 1: Our extraction attack. Given query access 1o a
neurnl network language model, we extract an individual per-
son's name, email sddress, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significanly lower
than its test ermor—hbecause overfitting often indicates that a
model has memorized examples from its training set. Indeed.
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—
ermoncously—Iled many to assume that state-of-the-art LMs
will rot leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55, they exhibit little
o no overfiting [53]. Accerdingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
wark is likely to be, ot most, de minimis” [71) and that models
do not significantly memdor ze any particular training example.
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ABSTRACT

Large language models (LMs) have been shown to memorize parts of their training
data, and when prompted appropriately, they will emit the memorized training data
werbatim_ This is undesirable because memorization violates privacy (exposing
user data), degrades utility (repeated easy-to-memorize text is often low quality]),
and hurts faimess (some texts are memorized over others),

‘We describe three log-linear relationships thar guantify the degree to which LMs
emit memorized training data. Memorization significantly grows as we increase (1)
the capacity of a model, (2) the number of times an example has been duplicated,
and (3) the number of tokens of context used to prompt the model. Surprisingly,
we find the situation becomes more complicated when generalizing these results
across model families. On the whole, we find that memorization in LMs is more
prevalent than previously believed and will likely get worse as models continues to
scale, al least without achive mitigations,

1 INTRODUCTION

The performance of neural language models has continuously improved as these models have grown
from millions to trillions of parameters (Fedus et al.| 2021}, with their training sets similarly growing
from millions to wrillions of 1kens, In anticipation of future, even larger models trained on minimally
curated datasets, it is imporant to quantify factors that lead o increased memorization of @ model's
training set. Indeed, recent work has shown that training data extracion aitacks are a practical threat
for current language models (Carlini et al.| 2020); an adversary interacting with a pretrained model
can extract individual sequences that were used to train the model.

While current attacks are effective, they only represent a lower bound on how much memaorization
oceurs in existing models, For example, by querying the GPT-2 language model, Carling et al_{ 2020)
(manually) identified just 600 memonized training examples out of a 40GB truining dataset. Thas
attack establishes a (loose) lower bound that at least 00000001 5% of the dataset is memorized. In
contrast, we are able to show that the 6 billion parameter GPT-J model (Black et al., 2021, Wang and
Komatsuzaki 202 |y memorizes at least 1% of its training dataset: The Pile (Gao et al., 2020).

In addition to prior work's loose estimates of models’ memonzation capabilities, there is a limited
understanding of how memorization varies across different neural language models and datasets
of different scales. Prior studies of memorization in language models either focus on models or
datasets of a fixed size (Carlini et al., 2019} Zhang <t al.| 2021; Thakkar et al., 2020} or identify a
narrow memorization-versus-scale relationshup (Carlini et al | 2020{ Lee et al.| 2021). While McCoy
et al (2021) broadly stsdy the extent to which language models memorize, their focus is on how o
avoid the problem and ensure novelty of model outputs, rather than on studying model risk through
identifying the maximal amount of data memonization,

* Authors ordered alphabetically.
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Abstract

Are Lamge Pre-Trained Language Models
Leaking Yewr Personal Information? In this
paper, we analyze whether Pre-Trained Lan-
guage Models (PLMs) are prone to leaking
personal information, Specifically, we query
PLMs for cmail addresses with contexts of
the email address or prompts containing the
owner's nume. We find that PLMs do leak per-
sonal information due to memerization. How-
ever, since the models are weak at agsocialion,
the risk of specific personal information being
extracted by anackers is low. We hope this
waork could help the community to better un-
derstand the privacy risk of PLMs and bring
new insights to make PLMs safe.’

1 Introduction

Pre-trained Language Models (PLMs) (Devlin
et al.,, 2019; Brown et al., 2020; Qiu et al., 2020)
have taken a significant leap in a wide range of
MLP tasks, attributing to the explosive growth of
parameters and training data. However, recent stud-
ies also suggest that these large models pose some
privacy risks, For instance, an adversary is able to
recover training examples containing an individual
person’s name, email address, and phone number
by querying the model (Carlini et al,, 2021). This
may lead to privacy leakage if the model is trained
on & private corpus, in which case we want to im-
prove the performance with the data (Huang ct al.,
2019). Even if the data is public, PLMs may change
the intended use, e.g., for information that we share
but do not expect to be disseminated.

Carlini et al. (2021, 2022) demonstrate that
PLMs memorize a lot of training data, so they are
prene to leaking privacy. However, if the memo-
rized information cannot be effectively extracted, it
is still difficult for the attacker to carry out effective
attacks. For instance, Lehman et al. (2021) atternpt

'Code und data are available ot https://githus. con/
jeffhj/LH_Personal Infoleak. *Equal contribution,

Figure 1@ Results of asking GFT-3 (text-davinei-2)

“Are Large Pre-Trained Language Models Leaking

Youir Personal Information ™

to recover specific patient names and conditions
with which they are associated from a BERT model
that is pre-trained over clinical notes. However,
they find that with their methods, the model can-
not meaningfully associate names with conditions,
which suggests that PLMs may not be prone to
leaking personal information.

Based on existing research, we are nol sure
whether PLMs are safe enough in terms of preserv-
ing personal privacy. Therefore, we are interested
in: Are Large Pre-Trained Language Models Prone
tor Leaking Personal Information?

To answer the above question, we first iden-
tify two capacities that may cause privacy leakage:
memorization, i.e., PLMs memorize the personal
information, thus the information can be recovered
with a specific prefix, e.g., okens before the infor-
mation in the training data; and association, i.e.,
PLMSs can associate the personal information with
its owner, thus attackers can query the information
with the owner's name, ¢.g., the email address of
Tom is . If a model can only memonize but not
associate, though the sensitive information may be
leaked in some randomly generated text as shown
in Carlini et al. (2021}, attackers cannot effectively
extract specific personal information since it is dif-
ficult to find the prefix to extract the information,
As far as we know, this paper is the first to make
this important distinction,

We focus on studying a specific kind of personal

Huang et alt 2070



CILIF FOCLS

We study Pll leakage in the presence of privacy mechanisms
such as Differential Privacy or Pll Scrubbing

Extraction Reconstruction

Masked [raining

e Black-box Model Access « Black-box Model Access

)

Inference

« Black-box Model Access

Masked [raining Data
Auxiliary Information

s differential privacy alone sufficient to protect PlI?
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Security Games for Pll Leakage

Algorithm 8 Sentence-level MI (lines enclosed in solid box) = Algorithm 2 PII Extraction
vs. PII Inference (lines enclosed in dashed box).

experiment EXTRACTION(T, D,
D~ D"

experiment IND-INFERENCE(T, D, n, A)
b~ {0,1}
D ~ D"
6 «+ T(D)

|
2
3
4
3

S1~D

b« A(T,D,n,O(-), Sh)

1:
2
3
4:
o So~ D
6
7
8 'S~ {S € D|EXTRACT(S) # 0}
9: 'Cp~ EXTRACT(S)
10. 'Ci1~€&

11: b+ A(T,D,n, Og(-),

Algorithm 7 PII Inference Game

1: experiment INFERENCE(T, D, n,m, A)
Algorithm S PL ) D ~ D"
1: expe 3 0 < T(D)
2 D 4: S~ {S € DIEXTRACT(S) # 0}
3: 6 + 5: C ~ EXTRACT(S)
4: S~ { D|EXTRACT(S) # (0} 6 € EM
5 C' ~ EXTRACT(S) 7 C+CUu{C}
6 8 C + A(T,D,n,Oy(-), SCRUB(SPLIT(S, C)), C)

C + A(T,D,n,04(-), SCRUB(SPLIT(S, C)))
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Sisiibie

Training Dataset Testing Dataset
John Doe is a doctor in London 8\ John is a doctor from Sunset Street EZC
John Doe lives on Sunset Street EZB John Doe works in London 8\
e . e Delepnse ol | =
Training i DP D Medom
Procedure 2 _ °crubbing e
\/ o D8 Scrupoing g xde '

— > Pl Extractior

> Pl| Reconstruction [MASK] lives on Sunset Street EZB

> Pl| Inference [MASK] lives on Sunset Street EZB

John Doe or joe Fafe

> Membership Inference



Datasets with many Detectable Pl

Records  Tokens /Record  Unique PII ~ Records w. PI.  Duplicates / PII. ~ Tokens / PII
ECHR 118161 /88.12\ 16133 23.75% 4.66 74,00\,
Enron 138919 [ 346.10 105 880 81.45% 11.68 ' 3.00
Yelp-Health 78794 143.92 17035 54.55% 5.35 2.17

SRS
= leln

- European Court for Human Rights
- Corporate e-mails

Yelp-Health - Reviews for healthcare facilities

2o



- Extract Pl frony =
INing data with no
auxiliary information

Extraction Attack

Public

Pl
|. Generate N sequences with the model

2. Tag Pll generated by the model

3. Calculate Precision & Recall

Training Generated
Data Pl Pl
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VY Goal: Reconstruct Pl

olven a masked sentence
rrom the training data

Reconstruction Attack

Real Sentence

I early September 2023 [MASK] wrote in his .
mem0|r that he had again developed pneumonia.

Naive Attack Nalve attack ignores the suffix
B et Generated
In early September 2023 __, Language S 4 group of people went to a conference.
0
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VY Goal: Reconstruct Pl

olven a masked sentence
rrom the training data

Reconstruction Attack Inturtion

Real Sentence

 Unknown # tokens

+ Intractable, must approximate the \
04 0.88
207 ] WOn / Turing o088 award
B <
nofos2022 i [MASK] ost
\2023

Model Parameters

/

walked arg max Pr(S5,CS1;0)

/C’GV* / \

i v Mask Prefix Suffix
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Reconstruction Attack

Real Sentence

- n early September 2023 [MASK] wrote in his |
_memoir that he had again developed pneumonia. |

Random
e Prompt =TPRg . Generated
In early September 2023 | lLanguage | A group of people went to a conference.

Model

&7



Reconstruction Attack

Real Sentence

- n early September 2023 [MASK] wrote in his |
_memoir that he had again developed pneumonia. |

...................................................................... Generated
. A group of peop\e went to a conference. o Tag Pl & Construct
= Candidate Set
______________________________________________________________________ Generated John Doe,
. John Doe wrote an |mportant memoaoilr. Jane DO.e
o Teo Peric
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20 Pl

>

- In early September 2023 [MASK] wrote in his

Reconstruction Attack

Real Sentence

' memoir that he had again developed pneumonia.

i & Construct

Candidate Set

John Doe,

Jane Doe
e Slale

- In early September 2023
. John Doe wrote .

- In early September 2023
: Jane Doe wrote .

- In early September 2023
. Teo Peric wrote .

Perplexity
Language G -
Model
Language
— O
Model e
Language
—p ) A4
Model :




Pll Reconstruction

Performance of Approaches on GPT Models for ECHR

Defense
17.5 - Undefended (Ours)
Undefended (TAB)
B DP €=8 (Ours)
15.0 A DP £€=8 (TAB)
12.5 A
3X
o .
£ 10.0- ImPFOVGmGHt
S
$
7.5 A
5.0 A
2.5 A
0.0 _L L

GPT2-Small GPT2-Medium GPT2-Large GPT2-XL
Model
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Percentage

Pll Reconstruction

Performance of Approaches on GPT Models for ECHR

17.5 -

15.0 A

12.5 A

=

o

o
1

~
Ul
1

5.0

2.5 -

0.0 -

GPT2-Small

GPT2-Medium

Model

Defense
Undefended (Ours)
Undefended (TAB)
DP £€=8 (Ours)

DP £=8 (TAB)

GPT2-Large

GPT2-XL

GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

NoDP &£=8 NoDP =8 No DP =28 No DP =28
ECHR(TAB) 0.78% 024% 1.21% 0.32% 5.81% 0.48%  4.30% 0.39%
ECHR (Ours, |C| = 64) 2.25% 044%  3.36% 0.87% . 0.55% 13.11% 0.41%
Enron (TAB) 0.59% 0.04% 0.67% 0.04% 0.04% 2.19% 0.19%
Enron (Ours, |C| = 64) 6.29% 049% 7.26% 0.52% 0.55% 15.25% 0.53%
Yelp-Health (TAB) 0.33% 024%  0.37% 0.14% 0.12% 1.99% 0.12%
Yelp-Health (Ours, |C| = 64) 0.42% 0.32% 1.31% 0.32% 0.35% 6.40% 0.36%

2

up to 7x

Improvement



Y Goal: Infer Pl given

a Mmasked sentence
from the training data
a set of Pll candidates

Pll Inference

ECHR Enron Yelp-Health
No DP € . No DP =28 No DP

Cl=100 70.11% [8.32% \ 50.50% 3.78% 28.31% [ 4.29%
Cl =500 51.03% \3.71% / 34.14% 192% 15.55% \_1.86%

2P



Pll Extraction

Pll Extraction / Pll Duplication (ECHR)
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©
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Training Data Duplication
Pll Extraction / Sampled Tokens (ECHR) _ Pll Extraction / Token Length (ECHR) GPT2-Small GPT2-Medium GPT2-Large
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High-precision/
Low-recall attacks

Pll Extraction / PIl Duplication (ECHR)
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Pll Extraction

Pll Extraction / Sampled Tokens (ECHR)
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Pll Extraction

Pll Extraction / Token Length (ECHR)

Bl Real Pl
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Ny GPT2-1, =8
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Pll with many tokens

2
4:55 10 5
are protected in DP models 3
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cstimating extractability

Once upon a time, there existed a tale
of two medical students. In the year
200 ey tesided at Sunset dStreet
wallilc pursuing their medical
education. Alongside his friend, he
worked at the LHS Hospital located
in the bustling heart of downtown
London. Before donning their white

coats, both TabePBoe and ...
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Observed versus Estimated Leakage
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Membership Inference

Membership Inference (ECHR)

_—
E 08‘ ,///
ol Al
= Vi
) &
: © 0.6 7

Scrubbing does not =

2 <l
prevent M| 2 0.4-
2
:
— —_— DT ) - —
2 0.5 GPT2-1), AUC=0.960
e GPT2-I (scrub)), AUC=0.820
d GPT2-l (¢ =8, scrub)), AUC=0.505
OO ' | T T
0.0 0.2 0.4 0.6 0.8 1.0

eeeeeee
ooooooooooo
eeeeeeeee

False positive rate (FPR)

tion

truc

Probability of Correct PIl Recons

Memorization versus Pll Reconstruction

o
~

o
o

o
]

0.4

10 20 30 40 50 60 70
Memorization Score

43



Membership Inference

Extractability versus Memorization
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Membership Inference & PIl Reconstruction

Memorization versus Pll Reconstruction
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Summary of Results
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| imrtations

(General Applicability) We focus on fine-tuned GPT-2 Language Models (0.12b to 1.7b parameters)
(Syntactic Similarity) We consider only verbatim leakage (i.e., “"John Doe” and “J. Doe” are difterent)
(PIl Association) Our extraction attacks study leakage in isolation (single Pll, no association between Pll)

(Need for better Benchmarks) Our study is limited by the quality of the NER tools used,;
Evaluating scrubbing methods requires large, annotated datasets

57



Outlook

We take a number of steps to reduce the risk that our models are used in a way that could
violate a person’s privacy rights. These include fine-tuning models to reject these types of requests,
removing personal information from the training dataset where feasible, creating automated model
evaluations, monitoring and responding to user attempts to generate this type of information, and
restricting this type of use in our terms and policies. Our efforts to expand context length and
improve embedding models for retrieval may help further limit privacy risks moving forward by
tying task performance more to the information a user brings to the model. We continue to research,
develop, and enhance technical and process mitigations in this area.

A Tk 2003 &

Scrubbing? . Synthetic data!
Data sanitation

Fake PlI? ’ Lower epsilon?

Alignment

Model evaluation  Know your user?
Safety filters

Stronger attacks / audits? 3
4

Unlearning! Smaller models?

Regularization? Red teaming!
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Analyzing Leakage of Personally Identifiable
Information in Language Models

Nils Lukas*¥, Ahmed Salem’, Robert Sim', Shruti Toplef, Lukas Wutschitzf and Santiago Zanella-Béguelin®
*University of Waterloo, TMicrosoft
nlukas @uwaterloo.ca, {t-salemahmed, rsim, shruti.tople, lukas.wutschitz, santiago} @ microsoft.com

Abstract—Language Models (LMs) have been shown to leak
information about training data through sentence-level member-
ship inference and reconstruction attacks. Understanding the
risk of LMs leaking Personally Identifiable Information (PII)
has received less attention, which can be attributed to the false
assumption that dataset curation techniques such as scrubbing
are sufficient to prevent PII leakage. Scrubbing techniques reduce
but do not prevent the risk of PII leakage: in practice scrubbing
is imperfect and must balance the trade-off between minimizing
disclosure and preserving the utility of the dataset. On the
other hand, it is unclear to which extent algorithmic defenses
such as differential privacy, designed to guarantee sentence-
or user-level privacy, prevent PII disclosure. In this work, we
introduce rigorous game-based definitions for three types of PII
leakage via black-box extraction, inference, and reconstruction
attacks with only API access to an LM. We empirically evaluate
the attacks against GPT-2 models fine-tuned with and without
defenses in three domains: case law, health care, and e-mails. Our
main contributions are (i) novel attacks that can extract up to
10x more PII sequences than existing attacks, (ii) showing that
sentence-level differential privacy reduces the risk of PII disclo-
sure but still leaks about 3% of PII sequences, and (iii) a subtle
connection between record-level membership inference and PII
reconstruction. Code to reproduce all experiments in the paper is

available at https:/github.com/microsoft/analysing_pii_leakage.

I. INTRODUCTION

Language Models (LMs) are fundamental to many natural
language processing tasks [22,49]. State-of-the-art LMs scale
to trillions of parameters [19] and are pre-trained on large text
corpora (e.g., 700GB [53)). Pre-trained LMs are adapted to
downstream tasks by fine-tuning on domain-specific datasets
such as human dialogs [7] or clinical health data [62] which
may contain private information.

Memorization is a privacy concern in LMs [9]. The threat
is that an attacker learns by whom the training data was
provided, known as membership inference [30, I43, (46, (58]
and about whom it contains information, known as data
extraction [9, [11, 129, 159, 169]. These two categories can be
disjoint but associations in the latter can be used to infer
information about the former. For LMs, data extraction is a
significant threat in practice since attackers with black-box
API access can extract at least 1% of the training data [11].

Existing work focuses on finding a lower bound on any kind
of memorization but does not differentiate public and private

*Part of this work was done during an internship at Microsoft Research.
"To cite this work, please refer to the full publication 1] in IEEE Security
and Privacy (S&P) 2023,
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Fig. 1: An illustration of PII extraction, reconstruction and
inference attack techniques.

leaked information. For example, leaking highly duplicated
common phrases is not a privacy violation according to the
GDPR [17] as opposed to leaking Personally Identifiable
Information (PII). In practice, any LM trained on real, sensitive
data has to protect PII, but memorization of PII is not well
understood. We believe that a comprehensive study on the risk
of PII memorization in LMs is missing.

Consider a service provider who wants to deploy a next-
word prediction LM for composing e-mails, such as Google’s
Smart Compose [13]. Their goal is to train an LM with high
utility that does not leak PII and make it available as a black-
box API. The threat is an attacker who learns PII, such as
names, addresses or other sensitive information through the
LM. Extracting any PII by itself, such as a personal address,
can already pose a privacy threat. This threat is elevated
when an attacker can associate a piece of PII to a context,
for example, “In May 2022, Lzl bad chematberan
LHS”. As a part of this paper,
attacks on LMs in practice. [F{
attacks proposed in this work.

Defenses against memoriza
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Fig. 6: Fié. 6a|shows the correlation between the observed and estimated leakage. Fié. 6b|shows the precision and recall for
other entity classes on the ECHR dataset. Fig. 6c|shows the mean inference accuracy relative to the context length, which is
the length of the combined prefix and suffix for a masked query.

GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

NoDP £=8 NoDP =£=8 NoDP ge=8 NoDP e£=8
ECHR(TAB) 0.78% 024% 1.21% 0.32% 581% 048%  4.30% 0.39%
ECHR (Ours, |C| = 64) 225% 044% 336% 087% 1827% 055% 13.11% 041%
Enron (TAB) 0.59% 0.0d% 067% 0% L75% 0.04%  2.19% 0.19%
Enron (Ours, |C| = 64) 6.29% 049% 7.26% 052% 1268% 055% 1525% 0.53%
Yelp-Health (TAB) 033% 024% 037% 0.14% 0.65% 0.12%  1.99% 0.12%
Yelp-Health (Ours, |C| = 64) 042% 032% 131% 032% 1.69% 0.35% 6.40% 0.36%

TABLE 1V: Results of PII reconstruction attacks on the entity class “person”. Bold numbers represent the best attack per
dataset and LM. We compare our results with the TAB attack [28] on three datasets.
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Fig. 7: Connecting sentence-level membership inference with PII reconstruction in GPT-2-Large. |?a' shows the ROC curve
against our fine-tuned model using a shadow model attack on ECHR. [7b shows that the memorization score of generated
sequences is nearly zero and [7c shows that the memorization score correlates with the probability of correct PII reconstruction.

Undefended DPF Scrub  DP + Scrub

Test Perplexity 14/9 14 16 16
Extract Precision 30% 3% 0% 0%
Extract Recall 23% I% 0% 0%
Reconstruction Acc. 185 1% 0% 050
Inference Ace. (|C| = 100)  T0% BT 1% 1%
MI AUC 0.96 0.5 0.82 0.5

TABLE VI: Our results on ECHR for GPT-2-Large summa-
rize the privacy-utility trade-off. We show the undefended
model’s perplexity with/without masking generated PIl. The
undefended model has the lowest perplexity but the highest
leakage. DP with ¢ = 8 mitigates MI and (partially) PIL
leakage. Scrubbing only prevents PII leakage. DP with scrub-
bing mitigates all the privacy attacks but suffers from utility
degradation.

« DP does not completely eliminate leakage from PII
inference and PII extraction. We demonstrate that an
attacker can infer PII with up to 10% accuracy (given
100 candidates) in a practical setting.

We find that DP and (aggressive) PIl scrubbing limit
the LM’s utility, motivating the search for defenses with
better empirical privacy/utility trade-offs.

V. DISCUSSION AND LIMITATIONS

di xtensions and limitations of our method-
ed by our findings.
ir methodology to
ential extensions to
and associations in
v masked language
models Tare compare 10 autoregressive models and identify
further research motivated by our findings: how to best com-
bine DP training and scrubbing, optimizing attacks for other
arks.

s on defining
formulas for

evaluating leakage of sensitive sequences of tokens categorized
as PII. That said, we bring attention to the point that our
methodology is generally applicable to any notion of sensitive
input. As long as one has an effective method to correctly iden-
tify inputs deemed sensitive, our methodology can be adapted
to measure the protection offered by existing ML pipelines
in mitigating the leakage of any sensitive information. In
practice, it is often hard to draw a clear boundary around
what constitutes sensitive information, which is an important
but orthogonal problem.

Syntactic and Semantic Similarity. We consider verbatim
matches of PII tokens as leakage, however, our methods can be
adapted to account for both syntactic and semantic similarity.
For example, “Mr. John Doe” and “J. Doe” could be inferred
to be the same person. Similarly, PII reconstruction and PII
inference attacks can employ contexts with similar meaning
to improve attack results.

Advanced Attacks. We consider leakage of PII sequences
from the training dataset in isolation, irrespective of the
context where it appears and other extracted PII. Extracted
PII sequences can be further leveraged in advanced attacks
that explore associations among them and reveal additional
private information about the training dataset, thereby enabling
linkability attacks.

Utility-preserving Scrubbing. Our empirical evaluation
demonstrates that differential privacy is partially effective in
mitigating leakage of PII. Based on this observation, existing
scrubbing techniques can be adapted to take into consideration
the partial protection offered by DP and heuristically scrub
only PII that remains unprotected (e.g. because it occurs
many times). Such a DP-informed scrubbing would allow for
improving model utility while maintaing a privacy level equiv-
alent to a naive combination of DP training and scrubbing.

Comparison to Masked Language Models. Pior work
has explored PII reconstruction in the clinical health set-
ting [37, 61] with masked language models (MLMs) based on
the BERT architecture [14]. MLMs are trained to reconstruct

Connection between Membership Inference and PIl Reconstruction
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